:orphan: :py:mod:`MultiomeLoader-checkpoint` =================================== .. py:module:: MultiomeLoader-checkpoint Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: MultiomeLoader-checkpoint.MultiOmicsDataset .. py:class:: MultiOmicsDataset(input_data, sample_names=None, side_data=None, normalization_factors=None, model_matrix=None, initialization_input=None, to_tensor=None, use_cuda=False, load_on_cuda=None, transform=None, transform_side=None, transform_aux=None) Bases: :py:obj:`torch.utils.data.Dataset` An abstract class representing a :class:`Dataset`. All datasets that represent a map from keys to data samples should subclass it. All subclasses should overwrite :meth:`__getitem__`, supporting fetching a data sample for a given key. Subclasses could also optionally overwrite :meth:`__len__`, which is expected to return the size of the dataset by many :class:`~torch.utils.data.Sampler` implementations and the default options of :class:`~torch.utils.data.DataLoader`. .. note:: :class:`~torch.utils.data.DataLoader` by default constructs a index sampler that yields integral indices. To make it work with a map-style dataset with non-integral indices/keys, a custom sampler must be provided. .. py:method:: __len__() .. py:method:: __getitem__(idx)