Encoder-checkpoint
Module Contents
Classes
Base class for all neural network modules. |
- class Encoder-checkpoint.Encoder(input_size, z_dim, hidden_dims_enc_common, hidden_dims_enc_ind, hidden_dims_enc_pre_Z, fix_Z, linearize=False, layers_independent_types=None, image_size=[256, 256], kernel_size=3, stride=1, padding=1, pool_size=2, pool_stride=2)
Bases:
torch.nn.Module
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call
to()
, etc.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- forward(x)