MultiomeLoader-checkpoint
Module Contents
Classes
An abstract class representing a |
- class MultiomeLoader-checkpoint.MultiOmicsDataset(input_data, sample_names=None, side_data=None, normalization_factors=None, model_matrix=None, initialization_input=None, to_tensor=None, use_cuda=False, load_on_cuda=None, transform=None, transform_side=None, transform_aux=None)
Bases:
torch.utils.data.Dataset
An abstract class representing a
Dataset
.All datasets that represent a map from keys to data samples should subclass it. All subclasses should overwrite
__getitem__()
, supporting fetching a data sample for a given key. Subclasses could also optionally overwrite__len__()
, which is expected to return the size of the dataset by manySampler
implementations and the default options ofDataLoader
.Note
DataLoader
by default constructs a index sampler that yields integral indices. To make it work with a map-style dataset with non-integral indices/keys, a custom sampler must be provided.- __len__()
- __getitem__(idx)